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Resonance formation of Kirkwood gaps and asteroid
clusters
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Received 8 January 1996

Abstract. A mathematical description of the Kirkwood gap in the 2/1 resonance with Jupiter
is discussed in detail, providing a new insight into a traditionally controversial issue. The
discussion is further extended to demonstrate how, under slightly different circumstances, the
same kind of resonance can create the opposite effect of asteroid clustering.

It has been shown [1] and recently re-derived in more detail [5] that the behaviour of
an asteroid in the 2/1 resonance with Jupiter (subject to no other perturbing forces) can
be described, to a simple but adequate approximation, by the following set of differential
equations:

ϑ ′ = −cε

β
cos(ϑ) − 2(P − 1) (1a)

β ′ = −cε sin(ϑ) (1b)

P ′ = 12cεβ sin(ϑ) (1c)

whereP is the asteroid’s orbital period (by the choice of units equal to one in the exact
2/1 resonance),ε is Jupiter’s mass (relative to the Sun’s), 2β/(1 + β2) is the asteroid’s
eccentricity,ϑ is its aphelion’s angular distance from conjunction (the ‘resonance variable’
of [3]), c equals to
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(correcting a ‘misprint’ in [5]), and the independent variable is the asteroid’s ‘modified
time’ (' one half of the asteroid’s eccentric anomaly).

From equations (1b) and (1c) it easily follows thatP + 6β2 is a constant, which can be
used to eliminateP and rewrite (1a) as follows:

ϑ ′ = −cε

β
cos(ϑ) + 12β2 + K (3)

where

K = 2 − 2P0 − 12β2
0 (4)

(P0 andβ0 being the initial values). Equations (3) and (1b) further imply that

−2cε cos(ϑ)β + Kβ2 + 6β4 (5)
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Figure 1. Contour plot of (5) forK = −0.05 with ‘zeta’ being the resonance variable and
‘beta’ ' half the asteroid’s eccentricity. The nature of possible solutions to (1) is apparent.

is yet another constant, clearly indicating that the solution to (1) is periodic when in the
basin of either one (K > −0.0357) or two (K < −0.0357) of the system’s centres. These
are found by making the right-hand sides of (3) and (1b) identically equal to zero. Some
of this is illustrated in figure 1 which displays the contour plot of (5) withK = −0.05
with four distinct regions: two with the aphelion circulating, one each with the aphelion or
perihelion librating around conjunction.

The above analysis needs to be augmented when the asteroids are also subject to various
non-conservative forces, of which the most prominent is the one caused by collisions with
other orbiting bodies [1]. Slightly at variance with the reference just cited, we argue that
this effect is proportional to the speed of the asteroid,relative to the averagespeed of
particles orbiting the sun at the asteroid’s instantaneous location. The average speed is
established based oncircular orbits (thus, the asteroid at aphelion would be more likely to
be hit from behind, at the perihelion from the front). This ‘Kepler shear’ corresponds to a
force in the direction of the asteroid’s velocity and proportional toβ cos[2(s − s0)], where
2(s − s0) is the eccentric anomaly, set to zero at aphelion. The contribution of such a force
to our differential equations (1) is an extra−Cβ term on the right-hand side of (1b), C

being a small constant (related to the asteroid’s size). This term is sufficient to damp the
original solution to one of its centres (which have now become spiral foci of [4]), found by
solving (7a) and sin(ϑf) = 0. The location of these foci is plotted (in terms of the resulting
P ≡def Pf , obtained fromK = 2 − 2Pf − 12β2

f ) againstK in figure 2. The creation of a
1.3% gap is quite apparent. By analysing contour plots analogous to figure 1 with different
values ofK, and by numerical experimentation with the modified equations (1), it becomes
clear that asteroids in theK < −0.0357 regime would normally be trapped by the upper
(low-eccentricity) branch of figure 2, with the perihelion locked in with conjunction.

The linearized version of (3) and (1b) (with the extra−Cβ term) looks as follows:[
ϑ − ϑf

β − βf

]′
=

[ −C 24βf ∓ cε/β2
f

±cε −C

]
·
[

ϑ − ϑf

β − βf

]
+ · · · (6)
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Figure 2. Stable values of (1) in terms ofPf (the damped value of the orbital period) plotted
againstK representing initial conditions.

where thef subscript implies a fixed value of (3) and (1b), obtained from

±cε/βf + 12β2
f + K = 0 (7a)

and

sin(ϑf) = −Cβf

cε
(7b)

(the plus and minus signs implying the high- and low-eccentricity solutions, respectively).
In equation (7a) we assumed thatC was small enough to allow cos(ϑf) ' ∓1. Note
that (7a), being a cubic equation forβf , has either one real root or three, one of the latter
corresponding to a saddle point and as such discarded (the eligible roots were plotted in
figure 2). From the two eigenvalues of the matrix in (6) we can clearly see that theϑ andβ

(and consequentlyP )-libration/oscillation will be damped by a factor of exp(−Cs) to one
of the stable points of figure 1. Furthermore, based on the same matrix, one can compute
the asymptotic frequency of these oscillations (a non-trivial function of the inseparablecε

andK), which we display, relative to the asteroid’s orbital frequency, in figure 3.
The linearized treatment of the previous paragraph was carried out assuming thatP +6β2

remained constant. This, of course, is now valid only approximately. In the actual solution,
the damped value ofP will no longer stay constant, but will slowly decrease according to

P ′ = −12Cβ2
f . (8)

This drift in P will tend to modify the original density of the asteroids, but not very
noticeably except in the actual gap. When an asteroid withP0 > 1.013 reaches the gap,
the focus in which it had stabilized disappears, and the asteroid is forced to make a quick
transition to the only remaining stable point, which liesbelowthe gap. The actual transition
is illustrated in figure 4 (using an exaggerated value ofC = 0.0005 to speed up the process).
This explains why hardly any asteroids are found inside the gap itself.

The above analysis applies (qualitatively the coefficients will differ andϑ changes to
ϑ +π/2 for r odd) to any otherr/(r−1) resonance. Why then do some of these resonances,
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Figure 3. Asymptotic (near-stable-point) frequency of orbital period and eccentricity, relative
to the asteroid’s orbital frequency.

Figure 4. Sample solution to (1), with an extra−0.0005β term in (1b) causing damping. The
orbital period is displayed against modified time.

contrary to our explanation so far, tend to cluster asteroids around the commensurability,
depleting the surrounding region? The mystery lies in yet another extra term needed in (1) to
make our mathematical description fully realistic. Due to many possible extra forces, some
of them conservative, some dissipative, the asteroids’ orbital periodP will be perturbed in
either a periodic manner (the effect of Saturn and other planets) or in a systematic way (drag,
Sun’s tidal forces, meteorite showers). We assume that the strongest one, be it systematic
or cyclical, is changing so slowly that, for a given time, it can be considered constant. We
thus need to add an appropriateκ to the right-hand side of (1c) and repeat our analysis
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of the equations. Whenκ < 0 (energy loss), qualitatively nothing changes, only theP ’s
downward drift will increase slightly (in the spirit of the subsequent discussion we may
even see thisκ as the driving force of the gap formation, withC being a small stabilizing
subsidiary). On the other hand, whenκ > 0 (energy boost),however small, the direction of
the P -drift is reversed. This time, there is a single and rather trivialstablesolution to (1),
given by

Pf = 1 − cε

√
3C

κ

(
1 − κC

12c2ε2

)
≈ 1 (9a)

βf =
√

κ

12C
(9b)

and

sin(ϑf) = −
√

κC√
12cε

. (9c)

Thus, the asteroids below and inside the gap will eventually get trapped at its lower edge,
the ones above the gap will drift away, to be trapped by the next available resonance. This
explains the creation of asteroid clusters.

In conclusion, either a gap or a cluster will form in ar/(r − 1) resonance, depending
on whether the resonance is located in a region with a negative or a positiveκ, respectively
(κ itself may change in time when all perturbations due to the rest of the solar system are
fully accounted for, but such an analysis is beyond the scope of this paper). This is because
a resonance tends to act as a ‘semi-permeable membrane’, letting the asteroids through
(and very quickly so) in one direction only. And, as a simple demonstration of how it can
act as a barrier, we display two solutions to (1) with both extra terms (C = 0.0005, and
κ = 0.000 01) in figure 5. The linearized analysis gives thes-scale asymptotic frequency and

Figure 5. Two sample solutions to (1) with the same damping term as in figure 4 and an extra
+0.000 01 term in (1c), restoring stability near resonance.
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damping rate (now substantially diminished), as the imaginary and real part, respectively,
of the complex roots of the following cubic (assumingκC � 12c2ε2):

λ3 + 2Cλ2 + 12cε

(
cε

C

κ
+

√
κ

3C

)
λ + 24cε

√
Cκ

3
= 0 . (10)

One should note that, as the value ofc decreases (with increasing distance from Jupiter
and higher order of commensurability), both effects (gap and cluster creation) disappear, the
former gradually (the actual gaps get too narrow to be observable), the latter rather suddenly
as we approachcε = √

κC/12(' 0.000 02 in our case), where the stable point vanishes,
due to (9c), and the resonance ceases to act as a barrier (there is a brief transitional region
which allows capture of only some asteroids, depending on initial conditions).

Finally, when the same kind of analysis is applied to ther/(r − 2), . . . resonances
(for these, the trigonometric terms of (1) are further multiplied by the same extra power
of β [2]), the stable foci disappear (only the high-eccentricity focus can be found forK

negative) and the−Cβ term thus becomes inconsequential. A gap still appears (due to a
small negativeκ), but only when the initial eccentricity is larger than a certain threshold
value, resulting in the gap’spartial clearing. Furthermore, whenκ > 0, these resonances
are no longer capable of acting as a permanent barrier (an effect similar to theκ < 0 gap
creation is observed with some initial conditions, only a temporary asteroid’s capture with
others).
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